

Preliminary Saturn Atmospheric Density Results from Cassini's Final Plunge

Mau C. Wong and Dylan R. Boone Cassini Navigation Team December 13, 2017

Plunge characteristics

- Cassini's Rev293 final plunge into Saturn
 - 15-SEP-2017 10:33:17 ET (last tracking data point)
 - +9.22° N latitude, -54.31° E longitude
 - Saturn in Northern Summer, line-of-sight Earth visibility for impact
 - 63.3 mm/s drag ΔV accumulated prior to loss of signal
 - Coherent two-way tracking on 70-m station DSS43
 - Spherical frontal area model equal to 20.5 m²
 - Fixed drag coefficient C_D=2.1
- Atmospheric Density Model
 - Base densities estimated in layers, lowest layer encompassing loss of signal
 - Layer transitions when accumulated drag acceleration is 10x Doppler noise
 - Scale height computation enforces continuity between layers
 - 100% uncertainty on base densities for estimation

$$\rho = \rho_i \exp\left(\frac{h_i - h}{H_i}\right)$$

$$oldsymbol{a}_D = -rac{
ho C_d A V^2}{2m} \hat{oldsymbol{V}} \ H_i = rac{h_i - h_{i+1}}{log\left(
ho_{i+1}/
ho_i
ight)}$$

Orbit Determination Process

Estimation arc setup

Data arc:

- Want to minimize number of parameters in filter
- Arc focused on plunge, begin near apoapsis of final orbit:
- 12-SEP-2017 12:00 ET to 15-SEP-2017 12:00 ET
- Three tracks of 60-sec X/X Doppler prior to experiencing atmosphere
- One-sec X/X Doppler tracking during atmospheric entry
- Range data not used

Force Modeling

- DE435 planetary ephemeris
- Correction to SAT389 Saturn system ephemeris from rev271 reconstruction
- Layered exponential atmosphere for drag modeling
- Saturn zonal spherical harmonic gravity field J2-J8
- Impulsive burn models spindown of reaction wheels
- Spacecraft telemetry for thrusting to counter drag torque
- Stochastic accelerations estimated for mis-modeled forces

Filter Setup

Filter configuration in JPL's Monte software

Table 1. Filter parameter setup

Parameter	Unit	Estimated/Considered	a priori σ
Epoch state S/C position - X/Y/Z	km	Estimated	0.4/0.08/0.03
Epoch state S/C velocity - X/Y/Z	mm/s	Estimated	0.53/0.14/0.49
Base Density Layer [0]	kg/km ³	Estimated	1.51E-01
Base Density Layer [1]	kg/km ³	Estimated	2.19E-01
Base Density Layer [2]	kg/km ³	Estimated	2.05E-01
Base Density Layer [3]	kg/km ³	Estimated	1.57E-01
Base Density Layer [4]	kg/km ³	Estimated	8.07E-02
Saturn zonal spherical harmonics	unitless	Estimated	SAT389 updated covariance
Earth polar motion - X/Y	arcsec	Considered	3
UT1 bias	sec	Considered	2.5E-04
DSN station locations	cm/arcsec	Considered	3 / 1
Troposphere path delay - wet/dry	cm	Considered	1/1
Ionosphere path delay - day/night	cm	Considered	55/15
Drag scale factor	unitless	Considered	0.05

Estimation results

Prefit Doppler residuals for atmospheric entry (mm/sec)

Prefit residuals zoomed on plunge

Estimation results

Postfit Doppler residuals for atmospheric entry (mm/sec)

Postfit residuals zoomed on plunge

Estimation Results

Base Density Layer Estimates

- Uncertainties reflect number of data points in each layer
- Lowest layer under largest perturbations from atmosphere/gravity
- Final Doppler point at 10:33:17 ET (11:55:35 UTC ERT)

Table 2. Base density layer estimation results

Radius (km)	Base altitude (km)	Base density (kg/km ³)	1σ Uncertainty (kg/km ³)
61376.2	1267.5	1.27E-01	1.40E-01
61407.1	1304.4	2.89E-01	1.17E-01
61438.2	1341.6	2.04E-01	9.00E-02
61469.6	1379.4	1.80E-01	7.23E-02
61517.4	1436.7	1.12E-01	5.20E-02

Comparison to results from other sources

- Error bars plotted as +/- 1σ
- Predicted atmosphere based on experience in last five Saturn revs
- INMS counts converted to mass density assuming H2 atmosphere

© 2017 California Institute of Technology. Government sponsorship acknowledged.